Showing 1 - 10 of 205
The COVID-19 pandemic has led to enormous data movements that strongly affect parameters and forecasts from standard VARs. To address these issues, we propose VAR models with outlier-augmented stochastic volatility (SV) that combine transitory and persistent changes in volatility. The resulting...
Persistent link: https://www.econbiz.de/10013184356
The Basel credit-to-GDP gap is the single most popular measure of excessive credit growth and the financial cycle in general. It is based, however, on a purely statistical understanding of excessiveness: Growth is excessive if the credit-to-GDP ratio (i.e. the ratio of credit to nominal GDP) is...
Persistent link: https://www.econbiz.de/10015053486
This paper investigates the ability of several generalized Bayesian vector autoregressions to cope with the extreme COVID-19 observations and discusses their impact on prior calibration for inference and forecasting purposes. It shows that the preferred model interprets the pandemic episode as a...
Persistent link: https://www.econbiz.de/10013472790
The severity function approach (abbreviated SFA) is a method of selecting adverse scenarios from a multivariate density. It requires the scenario user (e.g. an agency that runs banking sector stress tests) to specify a "severity function", which maps candidate scenarios into a scalar severity...
Persistent link: https://www.econbiz.de/10011755965
To simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural changes, we introduce a time-varying parameter mixed-frequency VAR. To keep our approach from becoming too complex, we implement time variation parsimoniously: only the intercepts and a common...
Persistent link: https://www.econbiz.de/10011903709
This paper is concerned with the study of Bayesian inference procedures to commonly used time series models. In particular, the dynamic or state-space models, the time-varying vector autoregressive model and the structural vector autoregressive model are considered in detail. Inference...
Persistent link: https://www.econbiz.de/10012018632
This paper proposes a Skewed Stochastic Volatility (SSV) model to model time varying, asymmetric forecast distributions to estimate Growth at Risk as introduced in Adrian, Boyarchenko, and Giannone's (2019) seminal paper "Vulnerable Growth". In contrary to their semi-parametric approach, the SSV...
Persistent link: https://www.econbiz.de/10012807854
We propose a new approach to sample unobserved states conditional on available data in (conditionally) linear unobserved component models when some of the observations are missing. The approach is based on the precision matrix of the states and model variables, which is sparse and banded in many...
Persistent link: https://www.econbiz.de/10012510141
This paper contributes to the literature on early warning indicators by applying a Bayesian model averaging approach. Our analysis, based on Austrian data, is carried out in two steps: First, we construct a quarterly financial stress index (AFSI) quantifying the level of stress in the Austrian...
Persistent link: https://www.econbiz.de/10010458174
We analyze Granger causality testing in a mixed-frequency VAR, where the difference in sampling frequencies of the variables is large. Given a realistic sample size, the number of high-frequency observations per low-frequency period leads to parameter proliferation problems in case we attempt to...
Persistent link: https://www.econbiz.de/10011415576