Showing 1 - 10 of 109
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011383033
This article generalises the results of Sadi and Zakoian (2006) to a considerably larger class of nonlinear ARCH models with discontinuities, leverage e ects and robust news impact curves. We propose a new method of proof for the existence of a strictly stationary and phi-mixing solution....
Persistent link: https://www.econbiz.de/10011699508
Most of the available monthly interest data series consist of monthlyaverages of daily observations. It is well-known that this averaging introduces spurious autocorrelation effectsin the first differences of the series. It isexactly this differenced series we are interested in when...
Persistent link: https://www.econbiz.de/10011303868
We introduce a new estimation framework which extends the Generalized Method of Moments (GMM) to settings where a subset of the parameters vary over time with unknown dynamics. To filter out the dynamic path of the time-varying parameter, we approximate the dynamics by an autoregressive process...
Persistent link: https://www.econbiz.de/10011431471
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10011377309
Many seasonal macroeconomic time series are subject to changes in their means and variances over a long time horizon. In this paper we propose a general treatment for the modelling of time-varying features in economic time series. We show that time series models with mean and variance functions...
Persistent link: https://www.econbiz.de/10011379641
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
The asymmetric moving average model (asMA) is extended to allow forasymmetric quadratic conditional heteroskedasticity (asQGARCH). Theasymmetric parametrization of the conditional variance encompassesthe quadratic GARCH model of Sentana (1995). We introduce a framework fortesting asymmetries in...
Persistent link: https://www.econbiz.de/10011303289
In this paper, we present a new time series model, whichdescribes self-exciting threshold autoregressive (SETAR) nonlinearityand seasonality simultaneously. The model is termed multiplicativeseasonal SETAR (SEASETAR). It can be viewed as a special case of ageneral non-multiplicativeSETAR model...
Persistent link: https://www.econbiz.de/10011304390
Novel periodic extensions of dynamic long memory regression models with autoregressive conditional heteroskedastic errors are considered for the analysis of daily electricity spot prices. The parameters of the model with mean and variance specifications are estimated simultaneously by the method...
Persistent link: https://www.econbiz.de/10011346471