Showing 1 - 4 of 4
In this paper we test for (Generalized) AutoRegressive Conditional Heteroskedasticity [(G)ARCH] in daily data on 22 exchange rates and 13 stock market indices using the standard Lagrange Multiplier [LM] test for GARCH and a LM test that is resistant to patches of additive outliers. The data span...
Persistent link: https://www.econbiz.de/10011284080
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10011377309
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10011386468