Showing 1 - 10 of 12
Persistent link: https://www.econbiz.de/10009720726
This paper develops a Markov-Switching vector autoregressive model that allows for imperfect synchronization of cyclical regimes in multiple variables, due to phase shifts of a single common cycle. The model has three key features: (i) the amount of phase shift can be different across regimes...
Persistent link: https://www.econbiz.de/10011382676
One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the...
Persistent link: https://www.econbiz.de/10010374571
One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the...
Persistent link: https://www.econbiz.de/10011715983
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
Persistent link: https://www.econbiz.de/10009767004
Persistent link: https://www.econbiz.de/10009725302
The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the...
Persistent link: https://www.econbiz.de/10011536626
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10011386468
We propose a Bayesian infinite hidden Markov model to estimate time- varying parameters in a vector autoregressive model. The Markov structure allows for heterogeneity over time while accounting for state-persistence. By modelling the transition distribution as a Dirichlet process mixture model,...
Persistent link: https://www.econbiz.de/10011569148