Showing 1 - 10 of 22
An early development in testing for causality (technically, Granger non-causality) in the conditional variance (or volatility) associated with financial returns, was the portmanteau statistic for non-causality in variance of Cheng and Ng (1996). A subsequent development was the Lagrange...
Persistent link: https://www.econbiz.de/10011556246
The purpose of the paper is to show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, provides the regularity...
Persistent link: https://www.econbiz.de/10011587639
Persistent link: https://www.econbiz.de/10009767005
One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also...
Persistent link: https://www.econbiz.de/10010362978
parameters are not available under general conditions, but only for special cases under highly restrictive and unverifiable …
Persistent link: https://www.econbiz.de/10010384390
The paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency and...
Persistent link: https://www.econbiz.de/10011531101
parameters are not available under general conditions, but only for special cases under highly restrictive and unverifiable …
Persistent link: https://www.econbiz.de/10010477092
The three most popular univariate conditional volatility models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or...
Persistent link: https://www.econbiz.de/10010405194
One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the...
Persistent link: https://www.econbiz.de/10011715983
In the class of univariate conditional volatility models, the three most popular are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the...
Persistent link: https://www.econbiz.de/10011688332