Showing 1 - 9 of 9
Persistent link: https://www.econbiz.de/10009767005
One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also...
Persistent link: https://www.econbiz.de/10010362978
parameters are not available under general conditions, but only for special cases under highly restrictive and unverifiable …
Persistent link: https://www.econbiz.de/10010384390
parameters are not available under general conditions, but only for special cases under highly restrictive and unverifiable …
Persistent link: https://www.econbiz.de/10010477092
In the class of univariate conditional volatility models, the three most popular are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the...
Persistent link: https://www.econbiz.de/10011688332
Persistent link: https://www.econbiz.de/10009767006
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010259630
The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013)such that the estimated matrix is positive definite. Using this approach we can disentangle the...
Persistent link: https://www.econbiz.de/10010477100
This paper has been accepted for publication in the 'Review of Economics and Statistics'.We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be...
Persistent link: https://www.econbiz.de/10011383248