Showing 1 - 9 of 9
Persistent link: https://www.econbiz.de/10009767006
Persistent link: https://www.econbiz.de/10009724817
Persistent link: https://www.econbiz.de/10009724148
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010259630
The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the...
Persistent link: https://www.econbiz.de/10011536626
The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013)such that the estimated matrix is positive definite. Using this approach we can disentangle the...
Persistent link: https://www.econbiz.de/10010477100
Persistent link: https://www.econbiz.de/10000929736
For forecasting volatility of futures returns, the paper proposes an indirect method based on the relationship between futures and the underlying asset for the returns and time-varying volatility. For volatility forecasting, the paper considers the stochastic volatility model with asymmetry and...
Persistent link: https://www.econbiz.de/10011590424
The paper develops a new realized matrix-exponential GARCH (MEGARCH) model, which uses the information of returns and realized measure of co-volatility matrix simultaneously. The paper also considers an alternative multivariate asymmetric function to develop news impact curves. We consider...
Persistent link: https://www.econbiz.de/10011794277