Showing 1 - 8 of 8
We analyze the role of industrial and non-industrial production sectors in the US economy by adopting a novel multilevel factor model. The proposed model is suitable for high-dimensional panels of economic time series and allows for interdependence structures across multiple sectors. The...
Persistent link: https://www.econbiz.de/10014249846
We study the performance of alternative methods for calculating in-sample confidence and out of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation uncertainty. The...
Persistent link: https://www.econbiz.de/10011295703
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10010391531
We propose a multiplicative dynamic factor structure for the conditional modelling of the variances of an N-dimensional vector of financial returns. We identify common and idiosyncratic conditional volatility factors. The econometric framework is based on an observation-driven time series model...
Persistent link: https://www.econbiz.de/10012591559
In finance, durations between successive transactions are usually modelled by the autoregressive conditional duration model based on a continuous distribution omitting frequent zero values. Zero durations can be caused by either split transactions or independent transactions. We propose a...
Persistent link: https://www.econbiz.de/10011954223
This paper introduces a new model for spatial time series in which cross-sectional dependence varies nonlinearly over space by means of smooth transitions. We refer to our model as the Smooth Transition Spatial Autoregressive (ST-SAR). We establish consistency and asymptotic Gaussianity for the...
Persistent link: https://www.econbiz.de/10011658755
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10010484891
A new model for time-varying spatial dependencies is introduced. It forms an extension to the popular spatial lag model and can be estimated conveniently by maximum likelihood. The spatial dependence parameter is assumed to follow a generalized autoregressive score (GAS) process. The theoretical...
Persistent link: https://www.econbiz.de/10010491085