Showing 1 - 6 of 6
Persistent link: https://www.econbiz.de/10001718624
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10011334849
Adaptive Polar Sampling is proposed as an algorithm where random drawings aredirectly generated from the target function (posterior) in all-but-onedirections of the parameter space. The method is based on the mixed integrationtechnique of Van Dijk, Kloek & Boender (1985) but extends this one by...
Persistent link: https://www.econbiz.de/10011299991
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10011302625
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10011373822
The linear Gaussian state space model for which the common variance istreated as a stochastic time-varying variable is considered for themodelling of economic time series. The focus of this paper is on thesimultaneous estimation of parameters related to the stochasticprocesses of the mean part...
Persistent link: https://www.econbiz.de/10011327834