Showing 1 - 5 of 5
We introduce a new estimation framework which extends the Generalized Method of Moments (GMM) to settings where a subset of the parameters vary over time with unknown dynamics. To filter out the dynamic path of the time-varying parameter, we approximate the dynamics by an autoregressive process...
Persistent link: https://www.econbiz.de/10011431471
In this paper we investigate whether the dynamic properties of the U.S. business cycle have changed in the last fifty years. For this purpose we develop a flexible business cycle indicator that is constructed from a moderate set of macroeconomic time series. The coincident economic indicator is...
Persistent link: https://www.econbiz.de/10011376640
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10011377309
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
This paper has been accepted for publication in the 'Review of Economics and Statistics'.We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be...
Persistent link: https://www.econbiz.de/10011383248