Showing 1 - 10 of 16
In this paper we test for (Generalized) AutoRegressive Conditional Heteroskedasticity [(G)ARCH] in daily data on 22 exchange rates and 13 stock market indices using the standard Lagrange Multiplier [LM] test for GARCH and a LM test that is resistant to patches of additive outliers. The data span...
Persistent link: https://www.econbiz.de/10011284080
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
We advocate the use of absolute moment ratio statistics in conjunctionwith standard variance ratio statistics in order to disentangle lineardependence, non-linear dependence, and leptokurtosis in financial timeseries. Both statistics are computed for multiple return horizonssimultaneously, and...
Persistent link: https://www.econbiz.de/10011299968
Persistent link: https://www.econbiz.de/10009720703
Persistent link: https://www.econbiz.de/10009722625
We present a simple new methodology to allow for time-variation in volatilities using a recursive updating scheme similar to the familiar RiskMetrics approach. It exploits the link between exponentially weighted moving average and integrated dynamics of score driven time varying parameter...
Persistent link: https://www.econbiz.de/10010384110
We investigate the information theoretic optimality properties of the score function of the predictive likelihood as a device to update parameters in observation driven time-varying parameter models. The results provide a new theoretical justification for the class of generalized autoregressive...
Persistent link: https://www.econbiz.de/10010340740
We introduce a dynamic statistical model for Skellam distributed random variables. The Skellam distribution can be obtained by taking differences between two Poisson distributed random variables. We treat cases where observations are measured over time and where possible serial correlation is...
Persistent link: https://www.econbiz.de/10010253460
We introduce a new fractionally integrated model for covariance matrix dynamics based on the long-memory behavior of daily realized covariance matrix kernels and daily return observations. We account for fat tails in both types of data by appropriate distributional assumptions. The covariance...
Persistent link: https://www.econbiz.de/10011531139
Persistent link: https://www.econbiz.de/10010494787