Showing 1 - 10 of 53
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate....
Persistent link: https://www.econbiz.de/10011372520
We model 1981-2002 annual US default frequencies for a panel of firms in different rating and age classes. The data is decomposed into a systematic and firm-specific risk component, where the systematic component reflects the general economic conditions and default climate. We have to cope with...
Persistent link: https://www.econbiz.de/10011343953
We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y lpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing...
Persistent link: https://www.econbiz.de/10011348357
The linear Gaussian state space model for which the common variance istreated as a stochastic time-varying variable is considered for themodelling of economic time series. The focus of this paper is on thesimultaneous estimation of parameters related to the stochasticprocesses of the mean part...
Persistent link: https://www.econbiz.de/10011327834
Statistics Netherlands uses a state space model to estimate the Dutch unemployment by using monthly series about the labour force surveys (LFS). More accurate estimates of this variable can be obtained by including auxiliary information in the model, such as the univariate administrative series...
Persistent link: https://www.econbiz.de/10012434085
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010399681
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10011386179
Persistent link: https://www.econbiz.de/10010191411
Persistent link: https://www.econbiz.de/10003811428
Persistent link: https://www.econbiz.de/10003482698