Showing 1 - 10 of 23
Persistent link: https://www.econbiz.de/10003482711
We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time- varying with an...
Persistent link: https://www.econbiz.de/10011688512
Persistent link: https://www.econbiz.de/10009126681
Persistent link: https://www.econbiz.de/10008824705
Bank risk managers follow the Basel Committee on Banking Supervision (BCBS) recommendations that recently proposed shifting the quantitative risk metrics system from Value-at-Risk (VaR) to Expected Shortfall (ES). The Basel Committee on Banking Supervision (2013, p. 3) noted that: "a number of...
Persistent link: https://www.econbiz.de/10011431395
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10011431503
The increasing availability of financial market data at intraday frequencies has not only led to the development of improved volatility measurements but has also inspired research into their potential value as an information source for volatility forecasting. In this paper we explore the...
Persistent link: https://www.econbiz.de/10011334848
The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally Integrated Moving Average (ARFIMA) model for realized volatility, which accommodates level shifts, day-of-the-week...
Persistent link: https://www.econbiz.de/10011335205
The asymmetric moving average model (asMA) is extended to allow forasymmetric quadratic conditional heteroskedasticity (asQGARCH). Theasymmetric parametrization of the conditional variance encompassesthe quadratic GARCH model of Sentana (1995). We introduce a framework fortesting asymmetries in...
Persistent link: https://www.econbiz.de/10011303289
In this paper we present an exact maximum likelihood treatment forthe estimation of a Stochastic Volatility in Mean(SVM) model based on Monte Carlo simulation methods. The SVM modelincorporates the unobserved volatility as anexplanatory variable in the mean equation. The same extension...
Persistent link: https://www.econbiz.de/10011303314