Showing 1 - 10 of 45
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011383033
The asymmetric moving average model (asMA) is extended to allow forasymmetric quadratic conditional heteroskedasticity (asQGARCH). Theasymmetric parametrization of the conditional variance encompassesthe quadratic GARCH model of Sentana (1995). We introduce a framework fortesting asymmetries in...
Persistent link: https://www.econbiz.de/10011303289
Persistent link: https://www.econbiz.de/10009756308
We develop a new targeted maximum likelihood estimation method that provides improved forecasting for misspecified linear autoregressive models. The method weighs data points in the observed sample and is useful in the presence of data generating processes featuring structural breaks, complex...
Persistent link: https://www.econbiz.de/10012416341
This paper discusses identification, specification, estimation and forecasting for a general class of periodic unobserved components time series models with stochastic trend, seasonal and cycle components. Convenient state space formulations are introduced for exact maximum likelihood...
Persistent link: https://www.econbiz.de/10011350384
We propose a Bayesian infinite hidden Markov model to estimate time- varying parameters in a vector autoregressive model. The Markov structure allows for heterogeneity over time while accounting for state-persistence. By modelling the transition distribution as a Dirichlet process mixture model,...
Persistent link: https://www.econbiz.de/10011569148
Persistent link: https://www.econbiz.de/10010191431
Persistent link: https://www.econbiz.de/10009767006
Persistent link: https://www.econbiz.de/10009724340
Persistent link: https://www.econbiz.de/10009720743