Showing 1 - 10 of 312
We develop a vector autoregressive model with time variation in the mean and the variance. The unobserved time-varying mean is assumed to follow a random walk and we also link it to long-term Consensus forecasts, similar in spirit to so called democratic priors. The changes in variance are...
Persistent link: https://www.econbiz.de/10011809970
Persistent link: https://www.econbiz.de/10003861024
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10011378346
Persistent link: https://www.econbiz.de/10009720757
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random...
Persistent link: https://www.econbiz.de/10010465155
We propose a Bayesian infinite hidden Markov model to estimate time- varying parameters in a vector autoregressive model. The Markov structure allows for heterogeneity over time while accounting for state-persistence. By modelling the transition distribution as a Dirichlet process mixture model,...
Persistent link: https://www.econbiz.de/10011569148
Persistent link: https://www.econbiz.de/10003774524
Persistent link: https://www.econbiz.de/10003973297
Persistent link: https://www.econbiz.de/10003974036
A Bayesian model averaging procedure is presented that makes use of a finite mixture of many model structures within the class of vector autoregressive (VAR) processes. It is applied to two empirical issues. First, stability of the Great Ratios in U.S. macro-economic time series is investigated,...
Persistent link: https://www.econbiz.de/10011377110