Showing 1 - 10 of 2,598
We present new results for the likelihood-based analysis of the dynamic factor model that possibly includes intercepts and explanatory variables. The latent factors are modelled by stochastic processes. The idiosyncratic disturbances are specified as autoregressive processes with mutually...
Persistent link: https://www.econbiz.de/10011373811
In this paper we study what professional forecasters actually explain. We use spectral analysis and state space modeling to decompose economic time series into a trend, a business-cycle, and an irregular component. To examine which components are captured by professional forecasters we regress...
Persistent link: https://www.econbiz.de/10011305773
We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the...
Persistent link: https://www.econbiz.de/10011342560
Persistent link: https://www.econbiz.de/10009722696
A novel dynamic asset-allocation approach is proposed where portfolios as well as portfolio strategies are updated at every decision period based on their past performance. For modeling, a general class of models is specified that combines a dynamic factor and a vector autoregressive model and...
Persistent link: https://www.econbiz.de/10011563065
The multivariate analysis of a panel of economic and financial time series with mixed frequencies is a challenging problem. The standard solution is to analyze the mix of monthly and quarterly time series jointly by means of a multivariate dynamic model with a monthly time index: artificial...
Persistent link: https://www.econbiz.de/10010391543
We use Google search data with the aim of predicting unemployment, CPI and consumer confidence for the US, UK, Canada, Germany and Japan. Google search queries have previously proven valuable in predicting macroeconomic variables in an in-sample context. To our knowledge, the more challenging...
Persistent link: https://www.econbiz.de/10011987495
This paper discusses identification, specification, estimation and forecasting for a general class of periodic unobserved components time series models with stochastic trend, seasonal and cycle components. Convenient state space formulations are introduced for exact maximum likelihood...
Persistent link: https://www.econbiz.de/10011350384
This paper introduces a novel simulation-based filtering method for general state space models. It allows for the computation of time-varying conditional means, quantiles, and modes, but also for the prediction of latent variables in general. The method relies on generating artificial samples of...
Persistent link: https://www.econbiz.de/10014247627
This paper investigates the feasibility of using earlier provisional data to improve the now- and forecasting accuracy of final and official statistics. We propose the use of a multivariate structural time series model which includes common trends and seasonal components to combine official...
Persistent link: https://www.econbiz.de/10015062979