Showing 1 - 10 of 27
Accurate prediction of the frequency of extreme events is of primary importance in many financialapplications such as Value-at-Risk (VaR) analysis. We propose a semi-parametric method for VaRevaluation. The largest risks are modelled parametrically, while smaller risks are captured by the...
Persistent link: https://www.econbiz.de/10010533206
Using a limiting approach to portfolio credit risk, we obtain analyticexpressions for the tail behavior of the distribution of credit losses. We showthat in many cases of practical interest the distribution of these losses haspolynomial ('fat') rather than exponential ('thin') tails. Our...
Persistent link: https://www.econbiz.de/10011316891
During the Global Financial Crisis, regulators imposed short-selling bans to protect financial institutions. The rationale behind the bans was that "bear raids", driven by short-sellers, would increase the individual and systemic risk of financial institutions, especially for institutions with...
Persistent link: https://www.econbiz.de/10010226885
A dynamic semi-parametric framework is proposed to study time variation in tail fatness of sovereign bond yield changes during the 2010-2012 euro area sovereign debt crisis measured at a high (15-minute) frequency. The framework builds on the Generalized Pareto Distribution (GPD) for modeling...
Persistent link: https://www.econbiz.de/10012315434
The increasing availability of financial market data at intraday frequencies has not only led to the development of improved volatility measurements but has also inspired research into their potential value as an information source for volatility forecasting. In this paper we explore the...
Persistent link: https://www.econbiz.de/10011334848
In this paper we aim to measure actual volatility within a model-based framework using high-frequency data. In the empirical finance literature it is known that tick-by-tick prices are subject to market micro-structure such as bid-ask bounces and trade information. Such market micro-structure...
Persistent link: https://www.econbiz.de/10011342558
We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y lpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing...
Persistent link: https://www.econbiz.de/10011348357
The paper considers the problem as to whether financial returns have a common volatility process in the framework of stochastic volatility models that were suggested by Harvey et al. (1994). We propose a stochastic volatility version of the ARCH test proposed by Engle and Susmel (1993), who...
Persistent link: https://www.econbiz.de/10011441709
In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV)...
Persistent link: https://www.econbiz.de/10011483824
The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the...
Persistent link: https://www.econbiz.de/10011536626