Showing 1 - 10 of 553
Parameter estimates of structural economic models are often difficult to interpret at the light of the underlying economic theory. Bayesian methods have become increasingly popular as a tool for conducting inference on structural models since priors offer a way to exert control over the...
Persistent link: https://www.econbiz.de/10010464781
In modern data sets, the number of available variables can greatly exceed the number of observations. In this paper we show how valid confidence intervals can be constructed by approximating the inverse covariance matrix by a scaled Moore-Penrose pseudoinverse, and using the lasso to perform a...
Persistent link: https://www.econbiz.de/10011621515
All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non-Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct...
Persistent link: https://www.econbiz.de/10013417421
This paper proposes a score-driven model for filtering time-varying causal parameters through the use of instrumental variables. In the presence of suitable instruments, we show that we can uncover dynamic causal relations between variables, even in the presence of regressor endogeneity which...
Persistent link: https://www.econbiz.de/10014496538
In this paper, a set of neural network (NN) models is developed to compute short-term forecasts of regional employment patterns in Germany. NNs are modern statistical tools based on learning algorithms that are able to process large amounts of data. NNs are enjoying increasing interest in...
Persistent link: https://www.econbiz.de/10011348710
Persistent link: https://www.econbiz.de/10003290409
Persistent link: https://www.econbiz.de/10000945702
Public programs often use statistical profiling to assess the risk that applicants will become long-term dependent on the program. The literature uses linear probability models and (Cox) proportional hazard models to predict duration outcomes. These either focus on one threshold duration or...
Persistent link: https://www.econbiz.de/10011391532
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
We propose new scoring rules based on partial likelihood for assessing the relative out-of-sample predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial risk management. By construction, existing scoring rules based on weighted...
Persistent link: https://www.econbiz.de/10011374395