Showing 1 - 10 of 132
The system GMM estimator for dynamic panel data models combines moment conditions for the model in first differences with moment conditions for the model in levels. It has been shown to improve on the GMM estimator in the first differenced model in terms of bias and root mean squared error....
Persistent link: https://www.econbiz.de/10011379149
This paper considers spot variance path estimation from datasets of intraday high frequency asset prices in the presence of diurnal variance patterns, jumps, leverage effects and microstructure noise. We rely on parametric and nonparametric methods. The estimated spot variance path can be used...
Persistent link: https://www.econbiz.de/10011379469
This paper introduces a representation of an integrated vectortime series in which the coefficient of multiple correlation computed fromthe long-run covariance matrix of the innovation sequences is a primitiveparameter of the model. Based on this representation, a notion of nearcointegration is...
Persistent link: https://www.econbiz.de/10011300555
We propose a novel statistic to test the rank of a matrix. The rank statistic overcomes deficiencies of existing rank statistics, like: a Kronecker covariance matrix for the canonical correlation rank statistic of Anderson [Annals of Mathematical Statistics (1951), 22, 327–351] sensitivity to...
Persistent link: https://www.econbiz.de/10011332818
In the last decade we have seen extensive international research on the extent to which wages of individuals respond to changing local labour market conditions. For many countries and periods, an inverse relationship between wages and unemployment rates has been found. Following Blanchflower and...
Persistent link: https://www.econbiz.de/10011326398
We show that the Anderson-Rubin (AR) statistic is the sum of two independent piv-otal statistics. One statistic is a score statistic that tests location and the other statistictests misspecification. The chi-squared distribution of the location statistic has a degreesof freedom parameter that is...
Persistent link: https://www.econbiz.de/10011326948
The strong consistency and asymptotic normality of the maximum likelihood estimator in observation-driven models usually requires the study of the model both as a filter for the time-varying parameter and as a data generating process (DGP) for observed data. The probabilistic properties of the...
Persistent link: https://www.econbiz.de/10010364739
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010250505
Persistent link: https://www.econbiz.de/10010190991
In modern data sets, the number of available variables can greatly exceed the number of observations. In this paper we show how valid confidence intervals can be constructed by approximating the inverse covariance matrix by a scaled Moore-Penrose pseudoinverse, and using the lasso to perform a...
Persistent link: https://www.econbiz.de/10011621515