Showing 1 - 10 of 2,368
Since little is known about the degree of bias in estimated fixed effects in panel data models, we run Monte Carlo simulations on a range of different estimators. We find that Anderson-Hsiao IV, Kiviet's bias-corrected LSDV and GMM estimators all perform well in both short and long panels....
Persistent link: https://www.econbiz.de/10003716527
We show that the OLS and fixed‐effects (FE) estimators of the popular difference-in-differences model may deviate when there is time varying panel non-response. If such non-response does not affect the common-trend assumption, then OLS and FE are consistent, but OLS is more precise. However,...
Persistent link: https://www.econbiz.de/10011387121
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous. I show...
Persistent link: https://www.econbiz.de/10011387124
A growing literature on inference in difference-in-differences (DiD) designs with grouped errors has been pessimistic about obtaining hypothesis tests of the correct size, particularly with few groups. We provide Monte Carlo evidence for three points: (i) it is possible to obtain tests of the...
Persistent link: https://www.econbiz.de/10010221878
Applied work often studies the effect of a binary variable ("treatment") using linear models with additive effects. I study the interpretation of the OLS estimands in such models when treatment effects are heterogeneous. I show that the treatment coefficient is a convex combination of two...
Persistent link: https://www.econbiz.de/10012227296
It is standard practice in applied work to study the effect of a binary variable ("treatment") on an outcome of interest using linear models with additive effects. In this paper I study the interpretation of the ordinary and two-stage least squares estimands in such models when treatment effects...
Persistent link: https://www.econbiz.de/10011924924
We develop the case of two-stage least squares estimation (2SLS) in the general framework of Athey et al. (Generalized Random Forests, Annals of Statistics, Vol. 47, 2019) and provide a software implementation for R and C++. We use the method to revisit the classic application of instrumental...
Persistent link: https://www.econbiz.de/10012424219
This paper focuses on the estimation and predictive performance of several estimators for the time-space dynamic panel data model with Spatial Moving Average Random Effects (SMA-RE) structure of the disturbances. A dynamic spatial Generalized Moments (GM) estimator is proposed which combines the...
Persistent link: https://www.econbiz.de/10011872320
This paper combines the approach by Guimarães and Portugal (2010) with the methodology of Gelbach (2015) to investigate the determinants of the least squares bias of the wage return to education. We find that disregarding individual fixed effects is highly problematic, accounting for 95% of the...
Persistent link: https://www.econbiz.de/10010487490
Previous studies on gender wage discrimination have relied on OLS when estimating the wage equations. However, there exists a number of recent studies, devoted to estimating the return to education, that have shown that OLS may produce biased estimates for a number of reasons. Consequently, if...
Persistent link: https://www.econbiz.de/10011316913