Showing 1 - 10 of 890
Estimators of average treatment effects under unconfounded treatment assignment are known to become rather imprecise if there is limited overlap in the covariate distributions between the treatment groups. But such limited overlap can also have a detrimental effect on inference, and lead for...
Persistent link: https://www.econbiz.de/10010467806
This paper proposes a nonparametric method for evaluating treatment effects in the presence of both treatment endogeneity and attrition/non-response bias, using two instrumental variables. Making use of a discrete instrument for the treatment and a continuous instrument for...
Persistent link: https://www.econbiz.de/10011348296
We develop a nonparametric instrumental variable approach for the estimation of average treatment effects on hazard rates and conditional survival probabilities, without model structure. We derive constructive identification proofs for average treatment effects under noncompliance and dynamic...
Persistent link: https://www.econbiz.de/10011453442
This paper develops a novel wild bootstrap procedure to construct robust bias-corrected (RBC) valid confidence intervals (CIs) for fuzzy regression discontinuity designs, providing an intuitive complement to existing RBC methods. The CIs generated by this procedure are valid under conditions...
Persistent link: https://www.econbiz.de/10012139158
This paper develops a nonparametric methodology for treatment evaluation with multiple outcome periods under treatment endogeneity and missing outcomes. We use instrumental variables, pre-treatment characteristics, and short-term (or intermediate) outcomes to identify the average treatment...
Persistent link: https://www.econbiz.de/10010249397
In empirical research, measuring correctly the benefits of welfare interventions is incredibly relevant for policymakers as well as academic researchers. Unfortunately, the endogenous program participation is often misreported in survey data and standard instrumental variable techniques are not...
Persistent link: https://www.econbiz.de/10012243324
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011486511
This paper discusses the nonparametric identification of causal direct and indirect effects of a binary treatment based on instrumental variables. We identify the indirect effect, which operates through a mediator (i.e. intermediate variable) that is situated on the causal path between the...
Persistent link: https://www.econbiz.de/10010379279
Centralized school assignment algorithms must distinguish between applicants with the same preferences and priorities. This is done with randomly assigned lottery numbers, nonlottery tie-breakers like test scores, or both. The New York City public high school match illustrates the latter, using...
Persistent link: https://www.econbiz.de/10011989205
In this paper I revisit the interpretation of the linear instrumental variables (IV) estimand as a weighted average of conditional local average treatment effects (LATEs). I focus on a practically relevant situation in which additional covariates are required for identification while the...
Persistent link: https://www.econbiz.de/10012517854