Showing 1 - 10 of 907
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. This design arises in many institutional settings where a policy variable (such as weekly...
Persistent link: https://www.econbiz.de/10010467807
This paper is motivated by our attempt to answer an empirical question: how is private health insurance take-up in Australia affected by the income threshold at which the Medicare Levy Surcharge (MLS) kicks in? We propose a new difference de-convolution kernel estimator for the location and size...
Persistent link: https://www.econbiz.de/10011309141
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011760113
In this paper we consider nonparametric estimation of a structural equation model under full additivity constraint. We propose estimators for both the conditional mean and gradient which are consistent, asymptotically normal, oracle efficient and free from the curse of dimensionality. Monte...
Persistent link: https://www.econbiz.de/10010350365
In this paper, we employ a partially linear nonparametric additive regression estimator, with recent U.S. Current Population Survey data, to analyze returns to schooling. Similar to previous research, we find that blacks and Hispanics have higher rates of return on average. However, for married...
Persistent link: https://www.econbiz.de/10010462852
In this article we overview nonparametric (spline and kernel) regression methods and illustrate how they may be used in labor economic applications. We focus our attention on issues commonly found in the labor literature such as how to account for endogeneity via instrumental variables in a...
Persistent link: https://www.econbiz.de/10011946249
This paper proposes new ℓ1-penalized quantile regression estimators for panel data, which explicitly allows for individual heterogeneity associated with covariates. We conduct Monte Carlo simulations to assess the small sample performance of the new estimators and provide comparisons of new...
Persistent link: https://www.econbiz.de/10010238040
We propose various semiparametric estimators for nonlinear selection models, where slope and intercept can be separately identifed. When the selection equation satisfies a monotonic index restriction, we suggest a local polynomial estimator, using only observations for which the marginal...
Persistent link: https://www.econbiz.de/10012518068
This note argues that nonparametric regression not only relaxes functional form assumptions vis-a-vis parametric regression, but that it also permits endogenous control variables. To control for selection bias or to make an exclusion restriction in instrumental variables regression valid,...
Persistent link: https://www.econbiz.de/10003323164
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design. The distributional impacts of social programs such as welfare, education, training programs and unemployment insurance are of large interest to economists. QTE are an...
Persistent link: https://www.econbiz.de/10003975413