Showing 1 - 10 of 15
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
Persistent link: https://www.econbiz.de/10009627285
Persistent link: https://www.econbiz.de/10009581094
Persistent link: https://www.econbiz.de/10009613610
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Persistent link: https://www.econbiz.de/10003375765
The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional...
Persistent link: https://www.econbiz.de/10009627273
Persistent link: https://www.econbiz.de/10009611558
Implied trinomial trees (ITTs) present an analogous extension of trinomial trees proposed by Derman, Kani, and Chriss (1996). Like their binomial counterparts, they can fit the market volatility smile and actually converge to the same continuous limit as binomial trees. In addition, they allow...
Persistent link: https://www.econbiz.de/10003035960
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy-tailed distributions. We show that the recently proposed methods by Xia et al. (2002) can be made robust in such a way that preserves all advantages of the original...
Persistent link: https://www.econbiz.de/10003036534