Showing 1 - 10 of 12
Persistent link: https://www.econbiz.de/10003827262
Persistent link: https://www.econbiz.de/10003827266
This paper compares alternative models of time-varying macroeconomic volatility on the basis of the accuracy of point and density forecasts of macroeconomic variables. In this analysis, we consider both Bayesian autoregressive and Bayesian vector autoregressive models that incorporate some form...
Persistent link: https://www.econbiz.de/10013100483
This paper develops a method for producing current-quarter forecasts of GDP growth with a (possibly large) range of available within-the-quarter monthly observations of economic indicators, such as employment and industrial production, and financial indicators, such as stock prices and interest...
Persistent link: https://www.econbiz.de/10013065065
With the concept of trend inflation now widely understood as to be important as a measure of the public's perception of the inflation goal of the central bank and important to the accuracy of longer-term inflation forecasts, this paper uses Bayesian methods to assess alternative models of trend...
Persistent link: https://www.econbiz.de/10013112644
This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, as well as classical and Bayesian quantile regressions) and also different...
Persistent link: https://www.econbiz.de/10012834306
Interest rate data are an important element of macroeconomic forecasting. Projections of future interest rates are not only an important product themselves, but also typically matter for forecasting other macroeconomic and financial variables. A popular class of forecasting models is linear...
Persistent link: https://www.econbiz.de/10013235487
We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a...
Persistent link: https://www.econbiz.de/10013238045
We study a class of backtests for forecast distributions in which the test statistic is a spectral transformation that weights exceedance events by a function of the modeled probability level. The choice of the kernel function makes explicit the user's priorities for model performance. The class...
Persistent link: https://www.econbiz.de/10011927115
Persistent link: https://www.econbiz.de/10011892794