Showing 1 - 10 of 1,680
In this paper we investigate whether the forecast of the HICP components (indirect approach) improves upon the forecast of overall HICP (direct approach) and whether the aggregation of country forecasts improves upon the forecast of the euro-area as a whole, considering the four largest euro...
Persistent link: https://www.econbiz.de/10011604420
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-ofsample forecasts, particularly for models with many variables. A...
Persistent link: https://www.econbiz.de/10011605539
This paper shows how to compute the h-step-ahead predictive likelihood for any subset of the observed variables in parametric discrete time series models estimated with Bayesian methods. The subset of variables may vary across forecast horizons and the problem thereby covers marginal and joint...
Persistent link: https://www.econbiz.de/10011605581
We compare real-time density forecasts for the euro area using three DSGE models. The benchmark is the Smets-Wouters model and its forecasts of real GDP growth and inflation are compared with those from two extensions. The first adds financial frictions and expands the observables to include a...
Persistent link: https://www.econbiz.de/10011853328
Density forecast combinations are examined in real-time using the log score to compare five methods: fixed weights, static and dynamic prediction pools, as well as Bayesian and dynamic model averaging. Since real-time data involves one vintage per time period and are subject to revisions, the...
Persistent link: https://www.econbiz.de/10012422040
We compare direct forecasts of HICP and HICP excluding energy and food in the euro area and five member countries to aggregated forecasts of their main components from large Bayesian VARs with a shared set of predictors. We focus on conditional point and density forecasts, in line with...
Persistent link: https://www.econbiz.de/10012422163
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012422172
This paper compares within-sample and out-of-sample fit of a DSGE model with rational expectations to a model with adaptive learning. The Galí, Smets and Wouters model is the chosen laboratory using quarterly real-time euro area data vintages, covering 2001Q1-2019Q4. The adaptive learning model...
Persistent link: https://www.econbiz.de/10014374419
This paper studies how to combine real-time forecasts from a broad range of Bayesian vector autoregression (BVAR) specifications and survey forecasts by optimally exploiting their properties. To do that, it compares the forecasting performance of optimal pooling and tilting techniques, including...
Persistent link: https://www.econbiz.de/10012515464
This paper shows how to compute the h-step-ahead predictive likelihood for any subset of the observed variables in parametric discrete time series models estimated with Bayesian methods. The subset of variables may vary across forecast horizons and the problem thereby covers marginal and joint...
Persistent link: https://www.econbiz.de/10013083316