Showing 1 - 3 of 3
Outlier detection in high-dimensional datasets poses new challenges that have not been investigated in the literature. In this paper, we present an integrated methodology for the identification of outliers which is suitable for datasets with higher number of variables than observations. Our...
Persistent link: https://www.econbiz.de/10011916875
This paper shows how to compute the h-step-ahead predictive likelihood for any subset of the observed variables in parametric discrete time series models estimated with Bayesian methods. The subset of variables may vary across forecast horizons and the problem thereby covers marginal and joint...
Persistent link: https://www.econbiz.de/10011605581
In this paper we propose a methodology to estimate a dynamic factor model on data sets with an arbitrary pattern of missing data. We modify the Expectation Maximisation (EM) algorithm as proposed for a dynamic factor model by Watson and Engle (1983) to the case with general pattern of missing...
Persistent link: https://www.econbiz.de/10011605235