Showing 1 - 9 of 9
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-ofsample forecasts, particularly for models with many variables. A...
Persistent link: https://www.econbiz.de/10011605539
We propose a class of prior distributions that discipline the long-run behavior of Vector Autoregressions (VARs). These priors can be naturally elicited using economic theory, which provides guidance on the joint dynamics of macroeconomic time series in the long run. Our priors for the long run...
Persistent link: https://www.econbiz.de/10011853320
The business cycle is alive and well, and real variables respond to it more or less as they always did. Witness the Great Recession. In ation, in contrast, has gone quiescent. This paper studies the sources of this disconnect using VARs and an estimated DSGE model. It finds that the disconnect...
Persistent link: https://www.econbiz.de/10012422097
This paper illustrates how to handle a sequence of extreme observations-such as those recorded during the COVID-19 pandemic-when estimating a Vector Autoregression, which is the most popular time-series model in macroeconomics. Our results show that the ad-hoc strategy of dropping these...
Persistent link: https://www.econbiz.de/10012422123
We compare sparse and dense representations of predictive models in macroeconomics, microeconomics and ftnance. To deal with a large number of possible predictors, we specify a prior that allows for both variable selection and shrinkage. The posterior distribution does not typically concentrate...
Persistent link: https://www.econbiz.de/10012515463
We propose a class of prior distributions that discipline the long-run behavior of Vector Autoregressions (VARs). These priors can be naturally elicited using economic theory, which provides guidance on the joint dynamics of macroeconomic time series in the long run. Our priors for the long run...
Persistent link: https://www.econbiz.de/10012926335
This paper illustrates how to handle a sequence of extreme observations—such as those recorded during the COVID-19 pandemic—when estimating a Vector Autoregression, which is the most popular time-series model in macroeconomics. Our results show that the ad-hoc strategy of dropping these...
Persistent link: https://www.econbiz.de/10012824662
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-of sample forecasts, particularly for models with many variables....
Persistent link: https://www.econbiz.de/10013036278
We compare sparse and dense representations of predictive models in macroeconomics, microeconomics and finance. To deal with a large number of possible predictors, we specify a prior that allows for both variable selection and shrinkage. The posterior distribution does not typically concentrate...
Persistent link: https://www.econbiz.de/10013231185