Showing 1 - 7 of 7
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the...
Persistent link: https://www.econbiz.de/10004991089
Several instance-based large-margin classi¯ers have recently been put forward in the literature: Support Hyperplanes, Nearest Convex Hull classifier, and Soft Nearest Neighbor. We examine those techniques from a common fit-versus-complexity framework and study the links be- tween them....
Persistent link: https://www.econbiz.de/10004991123
A new classification method is proposed, called Support Hy- perplanes (SHs). To solve the binary classification task, SHs consider the set of all hyperplanes that do not make classification mistakes, referred to as semi-consistent hyperplanes. A test object is classified using that...
Persistent link: https://www.econbiz.de/10004991143
Marketing problems often involve inary classification of customers into ``buyers'' versus ``non-buyers'' or ``prefers brand A'' versus ``prefers brand B''. These cases require binary classification models such as logistic regression, linear, and quadratic discriminant analysis. A promising...
Persistent link: https://www.econbiz.de/10005450848
To minimize the primal support vector machine (SVM) problem, we propose to use iterative majorization. To do so, we propose to use it- erative majorization. To allow for nonlinearity of the predictors, we use (non)monotone spline transformations. An advantage over the usual ker- nel approach in...
Persistent link: https://www.econbiz.de/10005450850
Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector...
Persistent link: https://www.econbiz.de/10005450870
Consider the classification task of assigning a test object to one of two or more possible groups, or classes. An intuitive way to proceed is to assign the object to that class, to which the distance is minimal. As a distance measure to a class, we propose here to use the distance to the convex...
Persistent link: https://www.econbiz.de/10005450881