Showing 1 - 4 of 4
This article shows that bagging can improve the forecast accuracy of time series models for realized volatility. We consider 23 stocks from the Dow Jones Industrial Average over the sample period 1995 to 2005 and employ two different forecast models, a log-linear specification in the spirit of...
Persistent link: https://www.econbiz.de/10008691629
Statistical Learning refers to statistical aspects of automated extraction of regularities (structure) in datasets. It is a broad area which includes neural networks, regression-trees, nonparametric statistics and sieve approximation, boosting, mixtures of models, computational complexity,...
Persistent link: https://www.econbiz.de/10008691632
This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification...
Persistent link: https://www.econbiz.de/10005511988
We derive the asymptotic distribution of the ordinary least squares estimator in a regression with cointegrated variables under misspecification and/or nonlinearity in the regressors. We show that, under some circumstances, the order of convergence of the estimator changes and the asymptotic...
Persistent link: https://www.econbiz.de/10010975480