Showing 1 - 8 of 8
We introduce a new method for the estimation of discount functions, yield curves and forward curves from government issued coupon bonds. Our approach is nonparametric and does not assume a particular functional form for the discount function although we do show how to impose various restrictions...
Persistent link: https://www.econbiz.de/10005699464
We introduce a new method for the estimation of discount functions, yield curves and forward curves from government issued coupon bonds. Our approach is nonparametric and does not assume a particular functional form for the discount function although we do show how to impose various restrictions...
Persistent link: https://www.econbiz.de/10005310377
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand...
Persistent link: https://www.econbiz.de/10005310381
We investigate a class of semiparametric ARCH(8) models that includes as a special case the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows for both flexible dynamics and flexible function form with regard to the 'news impact' function. We propose an...
Persistent link: https://www.econbiz.de/10005670800
We consider a semiparametric distributed lag model in which the "news impact curve" m isnonparametric but the response is dynamic through some linear filters. A special case ofthis is a nonparametric regression with serially correlated errors. We propose an estimatorof the news impact curve...
Persistent link: https://www.econbiz.de/10005797512
We propose new procedures for estimating the univariate quantities of interest in both additive and multiplicative nonparametric marker dependent hazard models. We work with a full counting process framework that allows for left truncation and right censoring. Our procedures are based on kernels...
Persistent link: https://www.econbiz.de/10005797514
We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic...
Persistent link: https://www.econbiz.de/10005797524
In this paper we investigate a class of semiparametric models for panel datasetswhere the cross-section and time dimensions are large. Our model contains alatent time series that is to be estimated and perhaps forecasted along with anonparametric covariate effect. Our model is motivated by the...
Persistent link: https://www.econbiz.de/10008838724