Showing 1 - 10 of 416
This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation,...
Persistent link: https://www.econbiz.de/10011755339
We consider a method for producing multivariate density forecasts that satisfy moment restrictions implied by economic theory, such as Euler conditions. The method starts from a base forecast that might not satisfy the theoretical restrictions and forces it to satisfy the moment conditions using...
Persistent link: https://www.econbiz.de/10011052219
The paper outlines a methodology for analyzing daily stock returns that relinquishes the assumption of global stationarity. Giving up this common working hypothesis reflects our belief that fundamental features of the financial markets are continuously and significantly changing. Our approach...
Persistent link: https://www.econbiz.de/10005119176
We establish estimation methods to determine co-jumps in multivariate high-frequency data with non-synchronous observations and market microstructure. A rate-optimal estimator of the entire quadratic covariation of an Itô-semimartingale is constructed by a locally adaptive spectral approach....
Persistent link: https://www.econbiz.de/10011117416
Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to...
Persistent link: https://www.econbiz.de/10011755324
We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our...
Persistent link: https://www.econbiz.de/10010730133
This paper considers nonparametric and semiparametric regression models subject to monotonicity constraint. We use bagging as an alternative approach to Hall and Huang (2001). Asymptotic properties of our proposed estimators and forecasts are established. Monte Carlo simulation is conducted to...
Persistent link: https://www.econbiz.de/10010785277
Estimation of GARCH models can be simplified by augmenting quasi-maximum likelihood (QML) estimation with variance targeting, which reduces the degree of parameterization and facilitates estimation. We compare the two approaches and investigate, via simulations, how non-normality features of the...
Persistent link: https://www.econbiz.de/10011755296
We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and...
Persistent link: https://www.econbiz.de/10011755317
The aims of this paper are estimate and forecast the Non-Accelerating Inflation Rate of Unemployment, or NAIRU, for Brazilian unemployment time series data. In doing so, we introduce a methodology for estimating mixed additive seasonal autoregressive (MASAR) models, by the Generalized Method of...
Persistent link: https://www.econbiz.de/10005407874