Showing 1 - 10 of 157
This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation,...
Persistent link: https://www.econbiz.de/10011755339
Estimation of GARCH models can be simplified by augmenting quasi-maximum likelihood (QML) estimation with variance targeting, which reduces the degree of parameterization and facilitates estimation. We compare the two approaches and investigate, via simulations, how non-normality features of the...
Persistent link: https://www.econbiz.de/10011755296
We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and...
Persistent link: https://www.econbiz.de/10011755317
This paper introduces a multivariate kernel based forecasting tool for the prediction of variance-covariance matrices …
Persistent link: https://www.econbiz.de/10011995208
Many financial decisions, such as portfolio allocation, risk management, option pricing and hedge strategies, are based on forecasts of the conditional variances, covariances and correlations of financial returns. The paper shows an empirical comparison of several methods to predict...
Persistent link: https://www.econbiz.de/10012696234
We propose a methodology to include night volatility estimates in the day volatility modeling problem with high-frequency data in a realized generalized autoregressive conditional heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between the realized measure...
Persistent link: https://www.econbiz.de/10012696256
We study the non-linear causal relation between uncertainty-due-to-infectious-diseases and stock-bond correlation. To this end, we use high-frequency 1-min data to compute daily realized measures of correlation and jumps, and then, we employ a nonlinear Granger causality test with the use of...
Persistent link: https://www.econbiz.de/10012696322
This survey reviews the large and growing literature on the use of pair-copula constructions (PCCs) in financial applications. Using a PCC, multivariate data that exhibit complex patterns of dependence can be modeled using bivariate copulae as simple building blocks. Hence, this model represents...
Persistent link: https://www.econbiz.de/10011755354
Recently, several copula-based approaches have been proposed for modeling stationary multivariate time series. All of them are based on vine copulas, and they differ in the choice of the regular vine structure. In this article, we consider a copula autoregressive (COPAR) approach to model the...
Persistent link: https://www.econbiz.de/10011755370
We discuss several multivariate extensions of the Multiplicative Error Model to take into account dynamic interdependence and contemporaneously correlated innovations (vector MEM or vMEM). We suggest copula functions to link Gamma marginals of the innovations, in a specification where past...
Persistent link: https://www.econbiz.de/10011755372