Showing 1 - 10 of 80
In this paper we propose a test for a set of linear restrictions in a Vector Autoregressive Moving Average (VARMA) model. This test is based on the autoregressive metric, a notion of distance between two univariate ARMA models, M0 and M1, introduced by Piccolo in 1990. In particular, we show...
Persistent link: https://www.econbiz.de/10010479050
contributions to the literature. First, an asymptotic theory is developed for unit root testing in a threshold autoregression, in …
Persistent link: https://www.econbiz.de/10012771003
We show that it is possible to adapt to nonparametric disturbance auto-correlation in time series regression in the presence of long memory in both regressors and disturbances by using a smoothed nonparametric spectrum estimate in frequency-domain generalized least squares. When the collective...
Persistent link: https://www.econbiz.de/10012771033
For modeling count time series data, one class of models is generalized integer autoregressive of order p based on thinning operators. It is shown how numerical maximum likelihood estimation is possible by inverting the probability generating function of the conditional distribution of an...
Persistent link: https://www.econbiz.de/10012160754
The paper is concerned with estimation and application of a special stationary integer autoregressive model where multiple binomial thinnings are not independent of one another. Parameter estimation in such models has hitherto been accomplished using method of moments, or nonlinear least...
Persistent link: https://www.econbiz.de/10012265595
Persistent link: https://www.econbiz.de/10011573592
This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators...
Persistent link: https://www.econbiz.de/10009754510
In this study, I investigate the necessary condition for the consistency of the maximum likelihood estimator (MLE) of spatial models with a spatial moving average process in the disturbance term. I show that the MLE of spatial autoregressive and spatial moving average parameters is generally...
Persistent link: https://www.econbiz.de/10011290741
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing nonstochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series...
Persistent link: https://www.econbiz.de/10012770893
Smoothed nonparametric kernel spectral density estimates are considered for stationary data observed on a d-dimensional lattice. The implications for edge effect bias of the choice of kernel and bandwidth are considered. Under some circumstances the bias can be dominated by the edge effect. We...
Persistent link: https://www.econbiz.de/10012770908