Showing 1 - 10 of 198
This paper proposes an estimator for the endogenous switching regression models with fixed effects. The decision to switch from one regime to the other may depend on unobserved factors, which would cause the state, such as being credit constrained, to be endogenous. Our estimator allows for this...
Persistent link: https://www.econbiz.de/10015272948
Polynomial specifications are widely used, not only in applied economics, but also in epidemiology, physics, political analysis and psychology, just to mention a few examples. In many cases, the data employed to estimate such specifications are time series that may exhibit stochastic...
Persistent link: https://www.econbiz.de/10010236711
This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators...
Persistent link: https://www.econbiz.de/10009754510
In regression we can delete outliers based upon a preliminary estimator and re-estimate the parameters by least squares based upon the retained observations. We study the properties of an iteratively defined sequence of estimators based on this idea. We relate the sequence to the Huber-skip...
Persistent link: https://www.econbiz.de/10009754516
There is near universal agreement that estimates and inferences from spatial regression models are sensitive to particular specifications used for the spatial weight structure in these models. We find little theoretical basis for this commonly held belief, if estimates and inferences are based...
Persistent link: https://www.econbiz.de/10010479047
This paper considers a functional-coefficient spatial Durbin model with nonparametric spatial weights. Applying the series approximation method, we estimate the unknown functional coefficients and spatial weighting functions via a nonparametric two-stage least squares (or 2SLS) estimation...
Persistent link: https://www.econbiz.de/10011504611
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function...
Persistent link: https://www.econbiz.de/10011506243
This paper proposes plug-in bandwidth selection for kernel density estimation with discrete data via minimization of mean summed square error. Simulation results show that the plug-in bandwidths perform well, relative to cross-validated bandwidths, in non-uniform designs. We further find that...
Persistent link: https://www.econbiz.de/10011296735
This paper discusses nonparametric kernel regression with the regressor being a d-dimensional ß-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate p n(T)hd, where n(T) is the number of regenerations...
Persistent link: https://www.econbiz.de/10011297654
ℓ1 polynomial trend filtering, which is a filtering method described as an ℓ1-norm penalized least-squares problem, is promising because it enables the estimation of a piecewise polynomial trend in a univariate economic time series without prespecifying the number and location of knots. This...
Persistent link: https://www.econbiz.de/10011887661