Showing 1 - 10 of 50
Missing data or missing values are a common phenomenon in applied panel data research and of great interest for panel data unit root testing. The standard approach in the literature is to balance the panel by removing units and/or trimming a common time period for all units. However, this...
Persistent link: https://www.econbiz.de/10013041203
Despite the growing interest in realized stochastic volatility models, their estimation techniques, such as simulated maximum likelihood (SML), are computationally intensive. Based on the realized volatility equation, this study demonstrates that, in a finite sample, the quasi-maximum likelihood...
Persistent link: https://www.econbiz.de/10014425668
This paper makes a twofold contribution. First, it develops the dynamic factor model of by allowing for fractional integration instead of imposing the classical dichotomy between I(0) stationary and I(1) non-stationary series. This more general setup provides valuable information on the degree...
Persistent link: https://www.econbiz.de/10015272692
Credible Granger-causality analysis appears to require post-sample inference, as it is well-known that in-sample fit can be a poor guide to actual forecasting effectiveness. However, post-sample model testing requires an often-consequential a priori partitioning of the data into an "in-sample"...
Persistent link: https://www.econbiz.de/10010336194
One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also...
Persistent link: https://www.econbiz.de/10010392823
The three most popular univariate conditional volatility models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or...
Persistent link: https://www.econbiz.de/10010417180
We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor's 500...
Persistent link: https://www.econbiz.de/10010478989
We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and...
Persistent link: https://www.econbiz.de/10011504739
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011504888
In cointegration analysis, it is customary to test the hypothesis of unit roots separately for each single time series. In this note, we point out that this procedure may imply large size distortion of the unit root tests if the DGP is a VAR. It is well-known that univariate models implied by a...
Persistent link: https://www.econbiz.de/10011505987