Showing 1 - 10 of 52
In this paper we propose a test for a set of linear restrictions in a Vector Autoregressive Moving Average (VARMA) model. This test is based on the autoregressive metric, a notion of distance between two univariate ARMA models, M0 and M1, introduced by Piccolo in 1990. In particular, we show...
Persistent link: https://www.econbiz.de/10010479050
Geostatistical spatial models are widely used in many applied fields to forecast data observed on continuous three-dimensional surfaces. We propose to extend their use to finance and, in particular, to forecasting yield curves. We present the results of an empirical application where we apply...
Persistent link: https://www.econbiz.de/10011411696
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence...
Persistent link: https://www.econbiz.de/10012503996
We propose an Aitken estimator for Gini regression. The suggested A -Gini estimator is proven to be a U-statistics. Monte Carlo simulations are provided to deal with heteroskedasticity and to make some comparisons between the generalized least squares and the Gini regression. A Gini-White test...
Persistent link: https://www.econbiz.de/10012025711
The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the...
Persistent link: https://www.econbiz.de/10009776381
One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also...
Persistent link: https://www.econbiz.de/10010392823
The three most popular univariate conditional volatility models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or...
Persistent link: https://www.econbiz.de/10010417180
We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor's 500...
Persistent link: https://www.econbiz.de/10010478989
We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and...
Persistent link: https://www.econbiz.de/10011504739
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011504888