Showing 1 - 7 of 7
In Chib (1995), a method for approximating marginal densities in a Bayesian setting is proposed, with one proeminent application being the estimation of the number of components in a normal mixture. As pointed out in Neal (1999) and Fruhwirth-Schnatter (2004), the approximation often fails short...
Persistent link: https://www.econbiz.de/10010706383
Missing variable models are typical benchmarks for new computational techniques in that the ill-posed nature of missing variable models offer a challenging testing ground for these techniques. This was the case for the EM algorithm and the Gibbs sampler, and this is also true for importance...
Persistent link: https://www.econbiz.de/10010708157
Also known as likelihood-free methods, approximate Bayesian computational (ABC) methods have appeared in the past ten years as the most satisfactory approach to untractable likelihood problems, first in genetics then in a broader spectrum of applications. However, these methods suffer to some...
Persistent link: https://www.econbiz.de/10010708595
. The Adaptive Multiple Importance Sampling algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling (IS) scheme. The difference with earlier adaptive IS implementations like Population Monte Carlo is that the importance weights of all simulated values,...
Persistent link: https://www.econbiz.de/10010708709
While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential...
Persistent link: https://www.econbiz.de/10010708771
Many authors have considered the problem of estimating a covariance matrix in small samples. In this framework the sample covariance matrix is not robust, the solution is to impose some ad hoc structure on the covariance matrix to force it to be well-conditioned. This method is known as...
Persistent link: https://www.econbiz.de/10011072592
The choice of the summary statistics in Bayesian inference and in particular in ABC algorithms is paramount to produce a valid outcome. We derive necessary and sufficient conditions on those statistics for the corresponding Bayes factor to be convergent, namely to asymptotically select the true...
Persistent link: https://www.econbiz.de/10011166507