Showing 1 - 8 of 8
Persistent link: https://www.econbiz.de/10011549652
Persistent link: https://www.econbiz.de/10010497134
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013103116
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10013103126
This paper proposes a Bayesian, graph-based approach to identification in vector autoregressive (VAR) models. In our Bayesian graphical VAR (BGVAR) model, the contemporaneous and temporal causal structures of the structural VAR model are represented by two different graphs. We also provide an...
Persistent link: https://www.econbiz.de/10013064757
Persistent link: https://www.econbiz.de/10012694862
Persistent link: https://www.econbiz.de/10013375506
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10013027970