Yor, Marc; Leblanc, Boris - In: Finance and Stochastics 2 (1998) 4, pp. 399-408
In this note, we prove that under some minor conditions on $\sigma$, if a martingale $X_t = \int_0^t \sigma_u dW_u $ satisfies, for every given pair $u \geq 0, \, \xi \geq 0$, $X_{u+\xi}-X_u{\mathop{=}^{\mathrm{(law)}}} X_{\xi},$ then necessarily, $|\sigma_u|$ is a constant and X is a constant...