Showing 1 - 3 of 3
Let $X_1(t)$, $\cdots$, $X_n(t)$ be $n$ geometric Brownian motions, possibly correlated. We study the optimal stopping problem: Find a stopping time $\tau^*\infty$ such that \[ \sup_{\tau}{\Bbb E}^x\Big\{ X_1(\tau)-X_2(\tau)-\cdots -X_n(\tau)\Big\}={\Bbb E}^x \Big\{...
Persistent link: https://www.econbiz.de/10005390741
Except for the geometric Brownian model and the geometric Poissonian model, the general geometric Lévy market models are incomplete models and there are many equivalent martingale measures. In this paper we suggest to enlarge the market by a series of very special assets (power-jump assets)...
Persistent link: https://www.econbiz.de/10005613439
In this paper we consider a market driven by a Wiener process where there is an insider and a regular trader. The insider has privileged information which has been deformed by an independent noise vanishing as the revelation time approaches. At this time, the information of every trader is the...
Persistent link: https://www.econbiz.de/10005390658