Showing 1 - 10 of 813
Machine learning tools are well known for their success in prediction. But prediction is not causation, and causal discovery is at the core of most questions concerning economic policy. Recently, however, the literature has focused more on issues of causality. This paper gently introduces some...
Persistent link: https://www.econbiz.de/10012858391
This paper shows how the role of Financial Soundness Indicators (FSIs) in financial surveillance can be usefully enhanced. Drawing from different statistical techniques, the paper illustrates that FSIs generate signals that can accurately detect, with 4 to 12 quarters lead, emerging financial...
Persistent link: https://www.econbiz.de/10013306766
In this paper, we study systemic non-financial corporate sector distress using firm-level probabilities of default (PD), covering 55 economies, and spanning the last three decades. Systemic corporate distress is identified by elevated PDs across a large portion of the firms in an economy. A...
Persistent link: https://www.econbiz.de/10013403314
Machine learning models are becoming increasingly important in the prediction of economic crises. The models, however, use datasets comprising a large number of predictors (features) which impairs model interpretability and their ability to provide adequate guidance in the design of crisis...
Persistent link: https://www.econbiz.de/10014256873
Financial crises pose unique challenges for forecast accuracy. Using the IMF's Monitoring of Fund Arrangement (MONA) database, we conduct the most comprehensive evaluation of IMF forecasts to date for countries in times of crises. We examine 29 macroeconomic variables in terms of bias,...
Persistent link: https://www.econbiz.de/10012907940
The paper evaluates the key drivers of fiscal crises in a sample of countries from all three income groups—advanced, emerging, and low-income countries, using fiscal crisis data recently developed by the IMF’s Fiscal Affairs Department. The empirical study focuses on three questions: (1) How...
Persistent link: https://www.econbiz.de/10014256370
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook.Most traditional forecasting models rely on fitting data to a pre-specified relationship between inputand output variables, thereby assuming a specific functional and stochastic process underlying...
Persistent link: https://www.econbiz.de/10012906888
We develop a framework to nowcast (and forecast) economic variables with machine learning techniques. We explain how machine learning methods can address common shortcomings of traditional OLS-based models and use several machine learning models to predict real output growth with lower forecast...
Persistent link: https://www.econbiz.de/10012836537
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning...
Persistent link: https://www.econbiz.de/10013292901
We produce a social unrest risk index for 125 countries covering a period of 1996 to 2020. The risk of social unrest is based on the probability of unrest in the following year derived from a machine learning model drawing on over 340 indicators covering a wide range of macro-financial,...
Persistent link: https://www.econbiz.de/10013306728