Showing 1 - 5 of 5
We test the importance of multivariate information for modelling and forecasting inflation's conditional mean and variance. In the literature, the existence of inflation's conditional heteroskedasticity has been debated for years, as it seemed to appear only in some datasets and for some lag...
Persistent link: https://www.econbiz.de/10010328579
We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns....
Persistent link: https://www.econbiz.de/10010328627
Appropriate risk management is crucial to ensure the competitiveness of financial institutions and the stability of the economy. One widely used financial risk measure is Value-at-Risk (VaR). VaR estimates based on linear and parametric models can lead to biased results or even underestimation...
Persistent link: https://www.econbiz.de/10012433150
We develop a uniform test for detecting and dating explosive behavior of a strictly stationary GARCH(r, s) (generalized autoregressive conditional heteroskedasticity) process. Namely, we test the null hypothesis of a globally stable GARCH process with constant parameters against an alternative...
Persistent link: https://www.econbiz.de/10012433262
This work aims to investigate the (inter)relations of information arrival, news sentiment, volatilities and jump dynamics of intraday returns. Two parametric GARCH-type jump models which explicitly incorporate both news arrival and news sentiment variables are proposed, among which one assumes...
Persistent link: https://www.econbiz.de/10012433216