Showing 1 - 5 of 5
We show that the OLS and fixed‐effects (FE) estimators of the popular difference-in-differences model may deviate when there is time varying panel non-response. If such non-response does not affect the common-trend assumption, then OLS and FE are consistent, but OLS is more precise. However,...
Persistent link: https://www.econbiz.de/10013012023
Based on new, exceptionally informative and large German linked employer-employee administrative data, we investigate the question whether the omission of important control variables in matching estimation leads to biased impact estimates of typical active labour market programs for the...
Persistent link: https://www.econbiz.de/10013128839
We investigate the finite sample performance of causal machine learning estimators for heterogeneous causal effects at different aggregation levels. We employ an Empirical Monte Carlo Study that relies on arguably realistic data generation processes (DGPs) based on actual data. We consider 24...
Persistent link: https://www.econbiz.de/10012894534
This paper investigates the finite sample properties of a range of inference methods for propensity score-based matching and weighting estimators frequently applied to evaluate the average treatment effect on the treated. We analyse both asymptotic approximations and bootstrap methods for...
Persistent link: https://www.econbiz.de/10012999030
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a...
Persistent link: https://www.econbiz.de/10012863828