Showing 1 - 10 of 119
Researchers are often interested in estimating the causal effect of some treatment on individual criminality. For example, two recent relatively prominent papers have attempted to estimate the respective direct effects of marriage and gang participation on individual criminal activity. One...
Persistent link: https://www.econbiz.de/10013155604
An important goal when analyzing the causal effect of a treatment on an outcome is to understand the mechanisms through which the treatment causally works. We define a causal mechanism effect of a treatment and the causal effect net of that mechanism using the potential outcomes framework. These...
Persistent link: https://www.econbiz.de/10013158662
This chapter describes the main impact evaluation methods, both experimental and quasi-experimental, and the statistical model underlying them. Some of the most important methodological advances to have recently been put forward in this field of research are presented. We focus not only on the...
Persistent link: https://www.econbiz.de/10012843149
Since the late 90s, Regression Discontinuity (RD) designs have been widely used to estimate Local Average Treatment Effects (LATE). When the running variable is observed with continuous measurement error, identification fails. Assuming non-differential measurement error, we propose a consistent...
Persistent link: https://www.econbiz.de/10012955015
We investigate the finite sample performance of causal machine learning estimators for heterogeneous causal effects at different aggregation levels. We employ an Empirical Monte Carlo Study that relies on arguably realistic data generation processes (DGPs) based on actual data. We consider 24...
Persistent link: https://www.econbiz.de/10012894534
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous.I show...
Persistent link: https://www.econbiz.de/10013012020
This paper proposes a new strategy to identify causal effects. Instead of finding a conventional instrumental variable correlated with the treatment but not with the confounding effects, we propose an approach which employs an instrument correlated with the confounders, but which itself is not...
Persistent link: https://www.econbiz.de/10012859287
There is a large theoretical literature on methods for estimating causal effects under unconfoundedness, exogeneity, or selection-on-observables type assumptions using matching or propensity score methods. Much of this literature is highly technical and has not made inroads into empirical...
Persistent link: https://www.econbiz.de/10013056251
Proxy variables are often used in linear regression models with the aim of removing potential confounding bias. In this paper we formalise proxy variables within the potential outcome framework, giving conditions under which it can be shown that causal effects are nonparametrically identified....
Persistent link: https://www.econbiz.de/10012986751
The importance of using natural experiments and experimental data in economic research has long been recognized. Yet, it is only in recent years that these approaches have become an integral part of the economist's analytical toolbox, thanks to the efforts of Meyer, Card, Peters, Krueger,...
Persistent link: https://www.econbiz.de/10012986753