Showing 1 - 10 of 25
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design. The distributional impacts of social programs such as welfare, education, training programs and unemployment insurance are of large interest to economists. QTE are an...
Persistent link: https://www.econbiz.de/10010269846
This note argues that nonparametric regression not only relaxes functional form assumptions vis-a-vis parametric regression, but that it also permits endogenous control variables. To control for selection bias or to make an exclusion restriction in instrumental variables regression valid,...
Persistent link: https://www.econbiz.de/10010268065
This paper proposes a nonparametric method for evaluating treatment effects in the presence of both treatment endogeneity and attrition/non-response bias, using two instrumental variables. Making use of a discrete instrument for the treatment and a continuous instrument for...
Persistent link: https://www.econbiz.de/10011401691
This paper develops a nonparametric methodology for treatment evaluation with multiple outcome periods under treatment endogeneity and missing outcomes. We use instrumental variables, pre-treatment characteristics, and short-term (or intermediate) outcomes to identify the average treatment...
Persistent link: https://www.econbiz.de/10010333307
In empirical research, measuring correctly the benefits of welfare interventions is incredibly relevant for policymakers as well as academic researchers. Unfortunately, the endogenous program participation is often misreported in survey data and standard instrumental variable techniques are not...
Persistent link: https://www.econbiz.de/10012270108
In cases of non-compliance with a prescribed treatment, estimates of causal effects typically rely on instrumental variables. However, when participation is also misreported, this approach can be severely biased. We provide an instrumental variable method that researchers can use to identify the...
Persistent link: https://www.econbiz.de/10013351966
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011786988
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design (RDD) and proposes simple estimators. Quantile treatment effects are a very helpful tool to characterize the effects of certain interventions on the outcome distribution. The...
Persistent link: https://www.econbiz.de/10005233749
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10005762088
This paper develops a nonparametric methodology for treatment evaluation with multiple outcome periods under treatment endogeneity and missing outcomes. We use instrumental variables, pre-treatment characteristics, and short-term (or intermediate) outcomes to identify the average treatment...
Persistent link: https://www.econbiz.de/10010747353