Showing 1 - 10 of 43
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate confounding covariates. Estimation of local average treatment effects is appealing since their identification relies on much weaker assumptions than the...
Persistent link: https://www.econbiz.de/10010262665
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate confounding covariates. Estimation of local average treatment effects is appealing since their identification relies on much weaker assumptions than the...
Persistent link: https://www.econbiz.de/10005566385
This paper discusses the evaluation problem using observational data when the timing of treatment is an outcome of a stochastic process. We show that the duration framework in discrete time provides a fertile ground for effect evaluations. We suggest easy-to-use nonparametric survival function...
Persistent link: https://www.econbiz.de/10010261825
This paper develops a nonparametric methodology for treatment evaluation with multiple outcome periods under treatment endogeneity and missing outcomes. We use instrumental variables, pre-treatment characteristics, and short-term (or intermediate) outcomes to identify the average treatment...
Persistent link: https://www.econbiz.de/10010333307
In cases of non-compliance with a prescribed treatment, estimates of causal effects typically rely on instrumental variables. However, when participation is also misreported, this approach can be severely biased. We provide an instrumental variable method that researchers can use to identify the...
Persistent link: https://www.econbiz.de/10013351966
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011786988
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10005762088
Nationwide health interventions are difficult to evaluate as contemporaneous control groups do not exist and before-after approaches are usually infeasible. We propose an alternative semi-parametric estimator that is based on the assumption that the intervention has no direct effect on the...
Persistent link: https://www.econbiz.de/10008560757
We use the data from the National Supported Work Demonstration to study performance of non-propensity-score-matching estimators, and to compare them with propensity score matching. We find that all matching estimators we studied here are sensitive to the choice of data set. Propensity score...
Persistent link: https://www.econbiz.de/10005703649
The matching method for treatment evaluation does not balance selective unobserved differences between treated and non-treated. We derive a simple correction term if there is an instrument that shifts the treatment probability to zero in specific cases. Policies with eligibility restrictions,...
Persistent link: https://www.econbiz.de/10005822262