Showing 1 - 10 of 1,310
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate confounding covariates. Estimation of local average treatment effects is appealing since their identification relies on much weaker assumptions than the...
Persistent link: https://www.econbiz.de/10010262665
This paper develops IV estimators for unconditional quantile treatment effects (QTE) when the treatment selection is endogenous. In contrast to conditional QTE, i.e. the effects conditional on a large number of covariates X, the unconditional QTE summarize the effects of a treatment for the...
Persistent link: https://www.econbiz.de/10010268775
This paper applies the theoretical literature on nonparametric bounds on treatment effects to the estimation of how limited English proficiency (LEP) affects wages and employment opportunities for Hispanic workers in the United States. I analyze the identifying power of several weak assumptions...
Persistent link: https://www.econbiz.de/10010273994
We examine instrumental variables estimation in situations where the instrument is only observed for a sub-sample, which is fairly common in empirical research. Typically, researchers simply limit the analysis to the sub-sample where the instrument is non-missing. We show that when the...
Persistent link: https://www.econbiz.de/10010269473
This paper proposes sequential matching and inverse selection probability weighting to estimate dynamic causal effects. The sequential matching estimators extend simple, matching estimators based on propensity scores for static causal analysis that have been frequently applied in the evaluation...
Persistent link: https://www.econbiz.de/10010261808
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design (RDD) and proposes simple estimators. Quantile treatment effects are a very helpful tool to characterize the effects of certain interventions on the outcome distribution. The...
Persistent link: https://www.econbiz.de/10010268551
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design. The distributional impacts of social programs such as welfare, education, training programs and unemployment insurance are of large interest to economists. QTE are an...
Persistent link: https://www.econbiz.de/10010269846
Macroeconomists have long been concerned with the causal effects of monetary policy. When the identification of causal effects is based on a selection-on-observables assumption, non-causality amounts to the conditional independence of outcomes and policy changes. This paper develops a...
Persistent link: https://www.econbiz.de/10010270625
The identification of average causal effects of a treatment in observational studies is typically based either on the unconfoundedness assumption or on the availability of an instrument. When available, instruments may also be used to test for the unconfoundedness assumption (exogeneity of the...
Persistent link: https://www.econbiz.de/10010284025
This note argues that nonparametric regression not only relaxes functional form assumptions vis-a-vis parametric regression, but that it also permits endogenous control variables. To control for selection bias or to make an exclusion restriction in instrumental variables regression valid,...
Persistent link: https://www.econbiz.de/10010268065