Showing 1 - 10 of 53
Abstract Unmeasured confounding is one of the most important threats to the validity of observational studies. In this paper we scrutinize a recently proposed sensitivity analysis for unmeasured confounding. The analysis requires specification of two parameters, loosely defined as the maximal...
Persistent link: https://www.econbiz.de/10014610900
Abstract The increasing availability of passively observed data has yielded a growing interest in “data fusion” methods, which involve merging data from observational and experimental sources to draw causal conclusions. Such methods often require a precarious tradeoff between the unknown...
Persistent link: https://www.econbiz.de/10014610911
Abstract Unmeasured confounding is an important threat to the validity of observational studies. A common way to deal with unmeasured confounding is to compute bounds for the causal effect of interest, that is, a range of values that is guaranteed to include the true effect, given the observed...
Persistent link: https://www.econbiz.de/10014610916
Abstract Residual confounding is a common source of bias in observational studies. In this article, we build upon a series of sensitivity analyses methods for residual confounding developed by Brumback et al. and Chiba whose sensitivity parameters are constructed to quantify deviation from...
Persistent link: https://www.econbiz.de/10014610935
Abstract The prognostic score, or disease risk score (DRS), is a summary score that is used to control for confounding in non-experimental studies. While the DRS has been shown to effectively control for measured confounders, unmeasured confounding continues to be a fundamental obstacle in...
Persistent link: https://www.econbiz.de/10014610811
Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered...
Persistent link: https://www.econbiz.de/10014610867
Abstract A benefit of randomized experiments is that covariate distributions of treatment and control groups are balanced on average, resulting in simple unbiased estimators for treatment effects. However, it is possible that a particular randomization yields covariate imbalances that...
Persistent link: https://www.econbiz.de/10014610869
Abstract Adjusting for covariates is a well-established method to estimate the total causal effect of an exposure variable on an outcome of interest. Depending on the causal structure of the mechanism under study, there may be different adjustment sets, equally valid from a theoretical...
Persistent link: https://www.econbiz.de/10014610917
Abstract : In this article, we discuss causal inference when there are multiple versions of treatment. The potential outcomes framework, as articulated by Rubin, makes an assumption of no multiple versions of treatment, and here we discuss an extension of this potential outcomes framework to...
Persistent link: https://www.econbiz.de/10014610783
Abstract Estimation of the causal dose–response curve is an old problem in statistics. In a non-parametric model, if the treatment is continuous, the dose–response curve is not a pathwise differentiable parameter, and no -consistent estimator is available. However, the risk of a candidate...
Persistent link: https://www.econbiz.de/10014610786