Showing 1 - 10 of 138
In this paper we describe methods and evaluate programs for linear regression by maximum likelihood when the errors have a heavy tailed stable distribution. The asymptotic Fisher information matrix for both the regression coefficients and the error distribution parameters are derived, giving...
Persistent link: https://www.econbiz.de/10010608473
In the presence of heteroscedasticity and autocorrelation of unknown forms, the covariance matrix of the parameter estimator is often estimated using a nonparametric kernel method that involves a lag truncation parameter. Depending on whether this lag truncation parameter is specified to grow at...
Persistent link: https://www.econbiz.de/10010730135
Estimating the integrated covariance matrix (ICM) from high frequency financial trading data is crucial to reflect the volatilities and covariations of the underlying trading instruments. Such an objective is difficult due to contaminated data with microstructure noises, asynchronous trading...
Persistent link: https://www.econbiz.de/10010776916
This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In...
Persistent link: https://www.econbiz.de/10010594970
We propose a general two-step estimator for a popular Markov discrete choice model that includes a class of Markovian games with continuous observable state space. Our estimation procedure generalizes the computationally attractive methodology of Pesendorfer and Schmidt-Dengler (2008) that...
Persistent link: https://www.econbiz.de/10010574065
In this paper, we propose two parametric alternatives to the standard GJR-GARCH model of Glosten et al. (1993), based on additive and multiplicative decompositions of the variance. They allow the variance of the model to have a smooth time-varying structure. The suggested parameterizations...
Persistent link: https://www.econbiz.de/10011052196
We propose a Bayesian nonparametric model to estimate rating migration matrices and default probabilities using the reinforced urn processes (RUP) introduced in Muliere et al. (2000). The estimated default probability becomes our prior information in a parametric model for the prediction of the...
Persistent link: https://www.econbiz.de/10011077595
We propose a model that can capture the typical features of multivariate extreme events observed in financial time series, namely, clustering behaviors in magnitudes and arrival times of multivariate extreme events, and time-varying dependence. The model is developed within the framework of the...
Persistent link: https://www.econbiz.de/10010906794
Realized volatilities observed across several assets show a common secular trend and some idiosyncratic pattern which we accommodate by extending the class of Multiplicative Error Models (MEMs). In our model, the common trend is estimated nonparametrically, while the idiosyncratic dynamics are...
Persistent link: https://www.econbiz.de/10010906796
This paper derives the limiting distributions of least squares averaging estimators for linear regression models in a local asymptotic framework. We show that the averaging estimators with fixed weights are asymptotically normal and then develop a plug-in averaging estimator that minimizes the...
Persistent link: https://www.econbiz.de/10011209277