Showing 1 - 5 of 5
We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a...
Persistent link: https://www.econbiz.de/10010574075
In this paper, we propose two parametric alternatives to the standard GJR-GARCH model of Glosten et al. (1993), based on additive and multiplicative decompositions of the variance. They allow the variance of the model to have a smooth time-varying structure. The suggested parameterizations...
Persistent link: https://www.econbiz.de/10011052196
This paper derives the asymptotic distribution for a number of rank-based and classical residual specification tests in AR–GARCH type models. We consider tests for the null hypotheses of no linear and quadratic serial residual autocorrelation, residual symmetry, and no structural breaks. We...
Persistent link: https://www.econbiz.de/10011190707
It is well known that the discrete Fourier transforms (DFTs) of a second order stationary time series between two distinct Fourier frequencies are asymptotically uncorrelated. In contrast for a large class of second order nonstationary time series, including locally stationary time series, this...
Persistent link: https://www.econbiz.de/10011190732
In this paper, we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints, we draw on ideas from the dynamic model averaging literature which achieve reductions in the computational burden...
Persistent link: https://www.econbiz.de/10011052255